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HEAT TRANSFER PROCESSES IN PHASE CONVERSIONS UNDER 

THE ACTION OF INTENSE ENERGY FLUXES 
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i. Introduction. In various processes of the treatment of materials by concentrated 
energy fluxes, as a rule, the thermal action of a plasma flux or laser or electron beam is 
used. Therefore, one of the most important problems of the physics of interaction of radia- 
tion with matter is the development of a thermal model of the laser breakdown of materials, 
the fundamentals of which have been developed in [i, 2]. The construction of an adequate 
theory of phase transitions under the action of intense energy fluxes is associated, in par- 
ticular, with the solution of boundary problems of heat conduction for regions with mobile 
boundaries. 

In the one-dimensional case, the simplest formulation of the problems considered in 
this review include the heat-conduction equation and the energy balance at the phase inter- 
face 

1 OT OZT 
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a Ot Ox z 

dy OT = q ( t ) - - Q v ( t ) ,  v ( O - -  . .  (2) 
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If such factors as the nonuniformity, nonstationarity, and spatial boundedness of the 
heat transfer processes, the temperature dependences of the vaporization rate and properties 
of the material, and diffusional phenomena, which are significant in a real situation, are 
taken into account, the formulation of the corresponding problems is considerably compli- 
cated; classical methods of heat-conduction theory become inappropriate for their solution, 
and it is necessary to use special mathematical means and approximate methods [3-10]. Some 
of these problems, relating to the problem of surface evaporation of metals, were considered 
in the review [ii], in which works published up to the middle of 1977 were taken into ac- 
count. The problem of heat conduction with a surface heat source of constant intensity and 
an additional kinetic relation between the velocity of phase-interface motion v and the 
evaporation temperature T e 

v = v, exp (-- E-~e ) (3) 

was analyzed in [ii]. 

No consideration was given in [ii] to the problems of melting and transformation in the 
solid phase, nor to processes of the laser destruction of nonmetallic materials, for which the 
bulk nature of light-energy absorption becomes significant, while the destruction kinetics 
may not only be determined by the heat transfer, but also limited by diffusion, change in 
concentration of the free electrons, or other processes. In these cases the formulation of 
the heat-conduction problem is supplemented by the appropriate boundary conditions. 

The present review is devoted to the consideration of these questions with generaliza- 
tion of the data of [ii], taking account of recent work. Consideration is limited here to 
analytical methods of investigation of heat transfer processes, and nothing is said regarding 
questions of radiation screening [2, 12], problems of melt motion -- see [13-15] and the lit- 
erature cited there-- and instability of the form of the phase-transition surface [17-19]; 
the information regarding diffusional photothermochemistry included in [20-22] is supple- 
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2. Nonsteady Melting (Ablation) of Materials. The problem of kinetics of the change in 
size and temperature of a melting body is one of the most important in heat-conduction theory 
and has formed the subject of many works. Here consideration is restricted predominantly to 
nonsteady problems, for which the law of phase-interface motion is not specified and must be 
determined in the course of solution. It is assumed here that heat transfer in the liquid 
occurs according to the Fourier law or is totally absent, which is characteristic of the 
cases when the melt moves ideally or "instantaneous" removal of the melt (ablation of the 
material [23]) occurs. 

In the one-dimensional case, processes of melting, crystallization, and diffusion are 
described by a single mathematical model, and for an arbitrary law of interface motion the 
temperature field may be found in the form of the series [8, 24] 

1 I x+l T (x, t) = Ts (t) -~ an(2ln) ' 0tn-m'l dt [tJ (t) - -  x]2n - -  ~'~-~ 1 Ox [x=~(O '(4) 
�9 ~0'  a~ (2n+,l)!  Ot ~ 

In a n a l y z i n g  problems of  m e l t i n g ,  Eq. (3) i s  u s u a l l y  n o t  t a k e n  i n t o  a c c o u n t ;  the  t e m p e r a t u r e  
of the phase interface is taken to be equal to the melting point 

T(y, l) = Tin. (5) 

Under definite simplifying assumptions, the equation for the desired law of phase-bound- 
ary motion may be obtained directly from the boundary problem, without calculating the tem- 
perature field [25-28]. The approach developed in [24-28] has been used to investigate a 
series of specific problems of melting under the action of a concentrated energy flux [29-33]. 

The nonsteady problem of the melting of a semiinfinite body under the action of a sur- 
face heat source of constant intensity was apparently first considered in [34]. The introduc- 
tion of dimensionless variables reduces the problem in Eqs. (i), (2), and (5), with the bound- 
ary conditions T(x, O) = Tb, T(=, t) = Tb, to a system depending on the parameter n = c(T m- 
Tb)Q~ I. The cases when n = 0 and ~ = ~ were considered in [34]. The initial stage of the 
melting process was investigated for any n by the method of successive approximation in [35]. 
An iterative process was constructed on the basis of the assumption that the term v~dT/dg ap- 
pearing on passing from Eq. (i) to the moving coordinate system g = x -- y is small. 

A similar problem of the growth of a crystal in the case of a constant flux through the 
surface x = 0 was considered in [36], where the introduction of the dimensionless variables 

X = xq.  , Y =  ~---~-q , T - -  r , 0 = c ( T  m - T )  (6) 
aQ aQ aQ2 Q 

r educes  the  problem to  a form n o t  i n c l u d i n g  any p a r a m e t e r s :  

O0 ___820  aO x=r-- dY , Y ( O ) = O ,  
OT OX  2 ' O X  , d r  ( 7 )  

O(Y, z)----O(X, 0 ) - - 0 ,  O-~X[x=o=--1. 

Then, using Eqs. (4) and (5), an equation is obtained for the function Y(r): 

1 d~+1 [ F  2~+~ (~)1 = 1 (8 )  
n=0 ( 2 n ~  t) I dz n+l 

The solution of Eq. (8) may be found, e.g., in the form Y (T) = ~An z~, and the tam- 
k=0 

perature field calculated using a computer exhaustively describes the process [8, 36]. 

In [37-42] and elsewhere, the integral Goodman method was used for the analysis of prob- 
lems of melting and ablation; in this method the heat-conduction equation is replaced by the 
heat-balance equation obtained as a result of integrating Eq. (i) with respect to x over the 
limits from 0 to L(t), where L(t) is the thicknes~ of the thermal boundary layer. Specifying 
the temperature profile in the form of a function of L and x, and substituting it into the 
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heat-balance equation and the boundary condition (2), a system of two equations with un- 
knowns v and L is obtained. A definite modification of the Goedman method [43] allows the 
accuracy of calculation to be significantly increased, and allows the power-law and exponen- 
tial dependence of the energy flux density on the time to be taken into account [44]. 

In [45], the problem of nonsteady melting is linearized by approximating the temperature 
field using an exponential function. The solution is found by series expansion of the rela- 
tions obtained after performing a Laplace transformation. 

In [46-50], the Blot variational method [51] was used; this method is based on the 
introduction of the thermodynamic equivalent of the Lagrangian function in mechanics and is 
also associated with the concept of a thermal layer, the temperature profile in which is 
approximated by a power law. In [52], the ablation problem for a semiinfinite body was 
solved by the variational method outlined in [53]. In contrast to the Blot method, this ap- 
proach allows the function v(t) to be obtained in explicit form. 

The methods of similarity and dimensionality theory have been used to find self-similar 
solutions of problems of melting under the action of a point heat source in the cases of 
plane, axial, and spherical symmetry [54-56]. 

The self-similar solution of the two-dimensional problem of the melting of a semiinfin- 
ite body heated by a moving heat source in the form of a strip was obtained in [57]. Non- 
steady melting under the action of a bulk heat source was considered in [58]. 

Taking account of the spatial boundedness of the melting body significantly complicates 
the analysis of the process. For a body of spherical form, the problem of melting is not 
equivalent to the problem of crystallization, on account of the presence of the initial crys- 
tal dimension Ro. Melting of a spherical crystal in an infinite melt heated to a tempera- 
ture T b > T m was investigated in [31]. The heat transfer satisfying the Fourier law was con- 
sidered separately for two regions: R(t) ~ r ~ Ro, r ~ Ro, with the corresponding matching 
conditions; an integral equation was obtained for the function R(t). The kinetics of the 
process depends strongly on the parameter ~. If [nl << i, melting extends oyer a consider- 

able time, and the law of interface motion is found in the form R(t) = [R0+~NnBn(T)]I/2, 
n=1 

where r = atR~ 2. When In[ > i, the crystal melts rapidly, and the solution of the problem is 
expediently obtained in the form of a power series in /~T. 

In [32], the problem of the melting of a heated spherical crystal was considered in the 
case when the stored energy is insufficient for complete melting. In the case when r >> i, 
the solution is obtained in the form 

R(z)=R~+ ~ A~exp - -  , R ~ = R o ( I + ~ )  1/a. 
n = l  

Melting of a plate of finite thickness was investigated in [30, 48-50, 59]. It is as- 
sumed that the melt is removed rapidly from the surface of the body. The formulation of the 
problem includes Eqs. (i), (2), (5) for the region 0~< x ~<y(t) (the coordinate origin is at 
the midpoint of the plate, which is heated symmetrically from the surfaces x = + Z by con- 
stant energy fluxes), the initial conditions T(x, 0) = f(x), y(0) = l, and the adiabatic 
symmetry condition 

+:l =0 (9) 
X~0 

The solution of the problem is sought in the form [29] 

X2 n d n 

T(x, t)= a ~(2n)l dt  ~ a ( t ) .  
r t~0  

(io) 

Substitution of (i0) into (2), (5) gives a system of nonlinear equations, solution of which 
(by the method of successive approximation with the use of operational calculation) allows 
the unknown functions o(t) and y(t) to be found. The final expressions for y(t) are found 
in the form of a series [8, 30]. In particular, for the initial conditions approximated 
by the function f(x) = T b + A1x 2, when T = atZ -2 is not too small, the following formula 
holds: 
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v ('0 = l - - -  lZq I T -- - -  

aQm t 

1)2 oo +  oo ) [k+ V ,  ]}' 
(il) 

where Oo = 2x(T m-Tb)(@) -I 
form 

When �9 << I, the solution is represented by a series of the 

{[~-?  ~1  (2k+l)Zjerfc(2k+l) -(2k+l)2V---------~ V/~-exp- I 
h=O 

(2k4T + 1)2 ]}" (12) 

It follows from the solution of the problem that at large T the temperature of a nondis- 
solving plate is equalized, and y becomes a linear function of T. 

Thus, the method considered in [8, 30] allows the process of melting to be described 
for any values of z, taking account of an arbitrary initial temperature distribution, and 
is also found to be effective for the analysis of the melting of a cylinder and a sphere 
[30, 8]. 

An analogous problem of the melting of a p la te  of f i n i t e  thickness with zero i n i t i a l  
condit ions was solved in [48-50] by the Biot method. Various possible  conditions of melt ing,  
determined by the r e l a t i on  between to and t2, l and lo, were considered in more de t a i l ;  here 
~o is the characteristic distance at which the rate of boundary motion is influenced by the 
adiabatic condition (9), and depends on the thermophysical properties of the material and the 
energy flux density [50]. 

When 5o < l, to < t2, two constant sections may exist on the curve of v(t): the first 
corresponds to the solution when the plate behaves as a semiinfinite body -- vl = q(Qm + cTm)-1; 
the second appears at the end of the process when the unmolten part is heated uniformly -- 
v= = qQ~:. This steady state is preceded by the corresponding transient conditions. In 
[48-50] approximate solutions were constructed (on the basis of a combination of the Blot 
method and perturbation theory) close to the steady states and then combined. Note that 
in [48-50] the dependence y(t) was obtained in parametric form, which hinders direct compari- 
son with Eqs. (ii), (12). The comparison in [49] with the results of [30] is not indicative, 
since only Eq. (ii) was taken into account in the analysis, and the parameters of the problem 
were chosen so that the condition T << I was satisfied over most of the time interval, when 
series (ii) converges poorly and series (12) must be used. When �9 is not small, the two 
approaches give similar results. The use of the Biot method allows the temperature depend- 
ence of the thermophysical coefficients of the materials to be taken into account [47, 50]. 

3. Evaporation. In most cases of interest for technology, corresponding to moderate 
energy-flux energies, processes of laser evaporation are described within the framework of 
the Stefan problem [2, ii]. In contrast to problems of melting, kinetic relations of the 
type in Eq. (3) must be taken into account, as a rule, in evaporation problems. A review 
of problems of this type for a surface heat source was given in [ii]. A method was outlined 
allowing the nonsteady problem (1)-(3) to be analyzed with an arbitrary initial condition 
f(x), for an arbitrary dependence of the energy flux density on the time q(t), taking account 
of the temperature dependences of the target properties [8, ii, 60, 61]. 

Representing the variable parameters by the power series 

[ (x)=  ~ x  ~, q( t )= 2B~(at)~/2' 
n:O n:0 

v(1)= 2 A =  C, (at) 
~=0 n=O 

(13) 

the temperature field is found in the form 

~=l 2 Vaf 

X 

(14) 
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Here hn, fn are Hermite functions [62]; Bn, Cn, mn, ~n, en are constant coefficients, between 
which there exist recurrence relations [60, 61]. Calculations of the velocity of motion 
and temperature of the phase boundary from (13), (14)agree satisfactorily with the results 
of numerical solution of the problem [63]. 

With laser irradiation of nonmetallic materials, and also with the action of an electron 
flux in a series of cases, the bulk character of light absorption by the material becomes 
significant, and the heat-conduction problem takes the form 

1 aT aZT dT .=y lo  = Qov(t). ( 1 5 )  a - + c (x, t), • 

In the case where the Bouguer--Lambert absorption law is valid, 

G (x, t) = q• exp {-- t~ ix - -  g (/)]}. 

When v = vo = c o n s t ,  p rob lem ( 1 5 ) ,  (16) i s  s o l v e d  by an o p e r a t i o n a l  method .  Then [1] 

(16) 

• --p • --p 
a a 

Vo = v, exp ( - -  E--~ee), Vo = q(Q~-[-cTe) -t. (18) 

Absorption laws differing from Eq. (16) (with irradiation of the material by an electron 
flux) and the corresponding temperature fields were considered in [64]. 

The nonsteady problem (15), (16), (3) with the condition T( ~, t) = 0 was investigated in 
[65] using an approach developed in [60]. The solution is sought close to the steady condi- 
tions (17), (18) 

T(g, l ) :  To(g ) @ Tl(g , t), v ( t ) :  Vo@Ot(t ). (19) 

Substituting (19) into (15), (3) and retaining only the terms linear in T: and vx, a system 
of linear equations for TI and v: is obtained, and it is solved by the method of Laplace 
transformation. As a result the following expression is obtained for v:: 

~)1"(t) - - e x p  ( v ~ t l 3  v 0 - -  4--a- ~ Ai {(~pZat) - T  -- v~ exp ( ~  ~2at) erfc (vi~ g ~ ) } ,  (20) 
i=l 

where  v i a r e  t he  r o o t s  of  t he  c u b i c  p o l y n o m i a l  [ 6 5 ] ,  t h e  form of  which  i s  i n d e p e n d e n t  of  t he  
i n i t i a l  t e m p e r a t u r e  d i s t r i b u t i o n  f ( x ) ; *  A i a r e  c o n s t a n t s  (complex  i n  t h e  g e n e r a l  c a s e ) .  

Acco rd ing  to  Eq. ( 2 0 ) ,  t he  t ime to t o  e s t a b l i s h  a c o n s t a n t  v a l u e  o f  t h e  v e l o c i t y  of  
e v a p o r a t i o n - f r o n t  m o t i o n  i s  ( i n  o r d e r  o f  m ag n i t u d e )  av~ 2 when V >> y e a - t ;  when V << yea  - 1 ,  
to = (~Vo) -z �9 

In view of the sharp dependence of v on T e defined by Eq. (3), the time t, to establish 
a steady value of the surface temperature is several times higher than to. A comparison of 
the theoretical [60, 61] and experimental [66] dependences of t, on q is shown in Fig. i. 

Analysis of the solution of Eq. (20) shows that with any real values of vi, the non- 
steady addition v, tends monotonically to zero with increase in t. If there are two com- 
plex-conjugate roots among vi, the velocity v dependsnonmonotonically on t and approaches Vo, 
performing damped oscillations (Figs. 2, 3). Until now, the problem has been considered 
in a one-dimensional formulation. The mathematical description of the phase-transition 
kinetics is evidently significantly complicated by taking into account that the heat trans- 
fer process is not one-dimensional and by the need to analyze the evolution of the form and 
dimensions of the phase interface. Nevertheless, under certain assumptions, this three- 
dimensional heat-conduction problem in a region with moving phase interfaces may be solved 

*Therefore, f(x) = 0 was assumed in [65] to simplify the final results. 
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Fig. i. Theoretical [60] and experimental [66] dependences 
of t: on q; copper; tl, sec; q, W/m 2. 

Fig. 2. Region of existence of oscillatory conditions of 
evaporation (shaded). 

when two phase transitions are taken into account: evaporation and melting [67]. 
is formulated in the form 

The problem 

1 OT~(x,  g,  z ,  t) 
= v2Ti(x, g, z, t), T 2 ( ~ ,  t ) =  T b, 

ai Ot (21) 

- - •  6T1 = q c o s ~ l  ..... Q~ dni , TI[~=T~, 
Onl I~ dt 

OT1 ., OT2 ~ ~ Qm dn2 
T~im = T d m  = T ~ ,  - -  • ~ = - -  • On---7" ~ d - - i -  

The l e t t e r s  e and m h e r e  d e n o t e  q u a n t i t i e s  c o r r e s p o n d i n g  to  the  e v a p o r a t i o n  and m e l t i n g  
s u r f a c e s ,  r e s p e c t i v e l y ;  i = 1, 2; i = 1 c o r r e s p o n d s  to  the  l i q u i d  and i = 2 to  the  s o l i d  
m a t e r i a l ;  the  r a d i a t i o n  i s  i n c i d e n t  a long  the  z a x i s .  I n  t h i s  f o r m u l a t i o n  of  the  p rob lem,  
no a c c o u n t  i s  t a k e n  of  the  h e a t  p r o p a g a t i o n  by the  b o u n d a r i e s  of  the  body and the  s p a t i a l  
boundedness  of  t he  h e a t  f l u x ,  and the  p o s s i b i l i t y  o f  m o t i o n  of  the  m e l t  i s  a l s o  i g n o r e d .  
D e t a i l e d  a n a l y s i s  of  the  c o n d i t i o n s  under  which the  g i v e n  a s s u m p t i o n s  a r e v a l i d m a y b e f o u n d  in  
[61, 67, 68] .  

The solution of the problem in Eq. (21) is obtained in the form of a function of the 
single variable ~: 

T~ (~) = A~ (~) + &, ~ (D = exp ( -  ~x) dx 

V x ( x  + 9) (22) 

Here 8 i = pv(2ai )-I and the following relation is valid for ~: 

p~ (23) 

The equations ~ = I and ~ = K define the evaporation and melting surfaces, respectively, 
in three-dimensional space; they take the form of elliptical paraboloids, one inside the other 
moving along the z axis at constant velocity v: 

v = q [Qe + Qm q- c (Te - -  Tb) F ([31)1-~, 

F(~) - -  T e - - T b  ~exp(D)Vl+q~[Ol (1 ) - -ao(K)]  c ( T ; ~ T  m) " 

(24) 

The constant coefficients Ai, Bi, K are determined from the boundary conditions of the 
problem. The quantity ~ characterizes the degree of elongation of the phase interfaces along 
the y axis. When ~ = O, the phase interfaces take the form of paraboloids of revolution, 
while the functions ~i transform to integral indicative functions. As ~+ =, the functions 
~i transform to supplementary integral probability functions, while the phase interfaces 
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Fig. 3. Dependence of velocity of evaporation-front motion on time 
[65]. Analytic (dashed) and numerical solutions; z = ~2at, ~ = v(a~) -~, 
Go = vo(a~) -~ Parameters corresponding to curves 1-3 are indicated on 
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Fig. 4. Experimental and theoretical dependences of the crater depth h 
and diameter d in graphite on q [61]: t = 4. 10 -3 sec; I) d; 2) h; h, 
d, m; q, W/m 2. 

are elongated into a parabolic cylinder. The solution (22)-(24) includes the results ob- 
tained in [68-71] as particular cases. The function F(B) characterizes the degree to 
which the destruction process is not one-dimensional. When B >> i, F(B) § i, and the process 
may be considered within the framework of the one-dimensional model. When B < i, the heat 
transfer in the solid material increases significantly, and the energy capacity of destruc- 
tion is increased in comparison with the one-dimensional case. 

The solution of Eq. (21) may be used in certain conditions [61, 67, 71] to calculate 
the parameters of the destruction process for various materials by laser radiation. A com- 
parison of the results of calculation with experimental data on crater formation in graph- 
ite [61] is shown in Fig. 4. A comparison of the experimental [72] and theoretical [71] 
dependences of the productivity of the laser cutting of granite (the surface area of the cut 
per unit time) on the velocity of laser-beam motion is shown in Fig. 5. 

The energy flux q absorbed by the material figures in the problems considered above; 
as a rule, q = const is assumed. At the same time, even with a constant magnitude of the 
incident flux density qo, the absorbed power density q = Aqo may significantly change on 
account of the temperature dependence of the absorptive power of the material A or, e.g., 
for thin semitransparent films, on account of the dependence of A on the thickness of the 
evaporating layer. 

For many metals, the temperature dependence of the absorbing power is satisfactorily 
approximated [13, 73] by the linear function A = AI + A2T s. This dependence does not lead 
to significant complication of the problem if the evaporation process is considered in the 
quasisteady approximation [73]; for the initial stages of nonsteady evaporation, the depend- 
ence A(T s) may be taken into account [61] by means of the procedure of series expansion 
(13), (14). Oxidation of the metal significantly influences the change in absorbing power and 
hence the destruction kinetics [20, 74]. 

In the evaporation of transparent dielectrics, absorption of radiation with a nonlinear 
temperature dependence develops with thermal breakdown of the material around the absorbing 
inhomogeneities, which is accompanied by a sharp rise in free-electron concentration on ac- 
count of thermal release of charge carriers in the valence band or on account of the thermal 
dissociation of multicomponent materials with subsequent partial ionization [75]. The ab- 
sorbing power of the dielectric is determined by the relations 

A : I - -  ~ [ r ( x l l d x ,  ~ ( T ) ~  ~ o e x p  - -  . ( 2 5 )  

The system of equations describing the propagation of heat and emission of a transparent 
dielectric takes the form [75, 76] 
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Fig. 5. Theoretical and experimental dependences of the produc- 
tivity of a laser knife H on the velocity of laser-beam motion U 
[72]. Radiation power 750 W: i) do = 5" i0-~; 2) 10 -2 m; H, ma/ 
sec; U, m/sec. 

Fig. 6. Dependences of the basic characteristics of the quasi- 
steady process of evaporation and dissociation of CaCO3 on q: I) 

Te; 2) Pd; 3) Td; T, ~ Pd, N/m=; q, W/m=" 

d2T v d T  
-4- - -  - -  q-  G ( r )  = O, G (T)  = q •  (T) ,  

dz 2 a dz 

aT  [ = -t-- oQ~, dq x - -  - -  - -  q ~ ( T ) ,  
az dz 

q ( - - o o ) = q o ,  T(oo)= O, o = v ,  exp( E-T~-) 

(26) 

Here the coordinate z is measured from the surface of maximum heat liberation, where the con- 
dition (dG/dz) z = o = 0 is satisfied. The upper plus sign refers to the case when the radia- 
tion is incident on the evaporating surface from outside, and the lower minus sign refers to 
the case of incidence of the radiation from within the transparent material. In [76], an 
approximate solution of the problem in Eq. (26) was obtained under the condition E r >> T. 
Since the maximum temperature Tma x is reached under the evaporation surface and the main 
contribution to light absorption comes from a small region of the dielectric at a tempera- 
ture close to Tmax, substituting a point source of intensity q• at the point z = 0 for 
the source function in the zero approximation leads to a solution of the heat-conduction 
equation (26) in the form 

T(O>(z)= gl u ( •  Vo ) ql Q [ v0 ] - - z  -4- u (~z )  - -  exp ( -~z - -g )  . (27) 
CU o a " ' COo c a 

The absorbed d e n s i t y  of the r a d i a t i o n  f lux  qx = Aqo i s  determined by s u b s t i t u t i n g  (27) 
into (25).  The temperature of the evaporating surface in the first approximation T~*) is 
calculated using (27), where T = T(~ is substituted into the T-dependent quantities. This 

z 
procedure allows the dependences of the evaporation rate and the absorbing power on the in- 
tensity of the incident radiation to be obtained in the second approximation [76], with satis- 
factory agreement with the results of numerical solution [75]. 

It follows from the solution of the problem that since the temperature distribution is 
asymmetric with respect to Tmax, the absorbing power of the input surface of the dielectric 
is found to be lower than in the case when the radiation is incident from the interior of the 
transparent material. With increase in laser-flux intensity, A decreases on account of the 
narrowing of the absorbing layer and the intensification of cooling action of evaporation. 
At sufficiently large qo, the input and output surfaces correspond to identical values of A, 
and the kinetics of dielectric evaporation does not depend on the direction of incidence of 
the radiation. 
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In the presence of a metallic film at the surface of the transparent dielectric, the 
threshold at which destruction of the film-- substrate system begins is found to be consider- 
ably lower than for a pure dielectric and for a massive metal, since a much smaller intensity 
is required for the destruction of a film that absorbs well than for the thermal breakdown 
of a transparent dielectric, while a much larger part of the radiation energy is released 
into the thickness of the material in the evaporation of massive metal than in the case of a 
dielectric substrate. The problem of heat conduction with evaporation of a metallic film 
on a transparent substrate was considered in [77], taking account of the dependence of the 
absorbing power of the film on its thickness, which varies in the course of destruction. 

4. Dissociation in the Solid Phase. In the thermal dissociation of a series of chemical 
compounds (e.g~, carbonates and hydrates of various metals, etc. [78]), no liquid phase is 
formed, but the liberated gases diffuse through a layer of solid decomposition products. 
With a relatively slow supply of heat, dissociation occurs at constant temperature T c. With 
the action of intense energy fluxes, gas transfer through the layer of solid deposit limits 
the decomposition process, which is accompanied by increase in dissociation temperature T d > 
T c and heating of the irradiated surface. This situation was considered in [79], where it 
was shown that taking diffusional processes into account leads to the appearance of the fol- 
lowing relation between the velocity of dissociation-boundary motion and its temperature: 

va = KMDPa(TsRTa) -1, va - -  

In accordance with the Arrhenius law, 

ds (28) 

dt 

--I Pa = P*exp(--EaTa ). (29) 

Boundary c o n d i t i o n  (28) l e a d s  to  a new group of  h e a t - c o n d u c t i o n  p rob lems  of  the  t y p e  of  the  
Stefan problem. 

When T d = const, the solution of Eq. (28) takes the form 

s(l) ( 2MKDPat ) 1/2 ( MKDPd ) 1/~. 
= . , va ( 0  : (30) R%'Td 2RyTJ 

The parabolic law of boundary motion satisfies the classical Stefan boundary problem 
with the boundary condition: T(0, t) = T s = const. On heating the body by a surface energy 
flux, the law in Eq. (30) satisfies the solution of the thermal problem if q = -- • (ZT/Zx)x=o co 
t-I/2 [79]. When q = const, the dissociation process is nonsteady (accompanied by increase 
in Td, T e, Pd) and may be investigated analogously to the problem of evaporation and melting 
without removal of the melt. In the initial stages of dissociation, the thin layer of solid 
product does not have a marked influence on the processes of heat and mass transfer, and the 
destruction kinetics is described by Eqs. (1)-(3), with the sole difference that E e is re- 

placed by E d in Eq. (3). 

Increase in thickness of the solid-deposit layer slows the processes of heat and mass 
transfer, which leads to increase in temperature of the irradiated surface; this, in turn, 
leads, after sufficient time of action of the heat source, to the development of the evapora- 
tion process. There then appears a second phase interface Ye(t), which moves behind the 
dissociation surface Yd(t). It follows from the solution of the corresponding heat-conduc- 
tion problem [67, 79] that with constant q, Td, Ts, quasisteady conditions of destruction 
are possible, with the two phase surfaces moving at the same velocity v and the thickness 
of the deposit layer s = Yd -- Ye remaining constant over time. In this case 

a [ e(T~--Ta) ] 
v =  q , s = - -  In 1 @ (31) 

Q~ + Qa + cTe v Oa + eTa 
E q u a t i o n s  ( 3 ) ,  (28 ) ,  (29 ) ,  and (31) form a sys t em of e q u a t i o n s  f o r  d e t e r m i n i n g  the  unknowns 
v, s, T d, T e, Pd" The results of solving this system [79] are shown in Fig. 6. 

Analysis of the nonsteady stage shows that the transition from conditions of dissocia- 
tion to conditions of dissociation with evaporation may occur in both a monotonic and nonmono- 
tonic manner (Fig. 7). Nonmonotonic conditions arise because in definite conditions the 
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Fig. 7. Character of the dependence of the dissociation rate v d of 
marble on t: i) monotonic; 2) nonmonotonic transition to quasisteady 
conditions of dissociation and evaporation. 

Fig. 8. Change in rate of phase-interface motion as a function of 
time [81], taking account of (curve i) and disregarding (curve 2) 
the finiteness of the rate of propagation of the heat perturbations. 

evaporation surface begins to move more rapidly than the dissociation surface, The thickness 
of the deposit layer then decreases, gas diffusion and dissociation are promoted, and the 
velocities v e and v d equalize. The region of existence of oscillatory conditions of dissoci- 
ation is determined analogously as for evaporation (see Sec. 3). The form of the time de- 
pendence of the dissociation rate shown in Fig. 7 is confirmed by experimental data on the 
laser destruction of marble [79]. 

5. Influence of the Finite Rate of Heat Propagation. In classical heat-conduction 
theory, the rate of propagation of the thermal perturbations ~ is assumed to be infinite~ 
However, under the action of high-intensity heat fluxes, it may be important to take ac- 
count of the finiteness of m for fast processes. The equation describing the heat transfer 
procesg in this case is of hyperbolic type, and its investigation for problems of heating 
and phase transitions under the action of intense energy fluxes [80-82] is based primarily 
on the work of Lykov [4, 83, 84] 

OT 02T a , tr �9 (32) 
at -? t~ Ot 2 Ox 2 

By m o d i f i c a t i o n  of  S t e f an  c o n d i t i o n  (2) and in view of  [81] ,  we o b t a i n  

x=y(~) ( dt 2 dy ) 
dT d2Y - ~ - - - ~  (33) --• =q--Q lr--=-- . 
dx 

In [81] ,  a s e r i e s  of s t e a d y  and nons teady  problems of the  type  (32) ,  (33) was c o n s i d -  
e red .  Steady conditions of evaporation of axisymmetric bodies of conical and needle-shaped 
form have been investigated by linearizing the model using the telegraph equation. Non- 
steady evaporation has been considered approximately for a semiinfinite body, a cylinder, 
and a sphere. 

Comparison of the solutions of one-dimensional problems of phase transition at t r = 0 
and t r > 0 show that when the classical heat-conduction equation -- Eq. (i) -- is used, the 
process of phase transition begins at a maximum rate, which may be as large as desired; 
taking account of the finiteness of the rate of heat propagation eliminates this singularity 
(Fig. 8). In addition, the use of the hyperbolic model allows the instability of the solu- 
tion for sinusoidal temperature change at the body's boundary, a feature which is character- 
istic of the parabolic model, to be eliminated. 

In [82], the one-dimensional problem of the melting and evaporation of a semiinfinite 
body was considered. Transforming Eq. (32) to a moving coordinate system, and noting that 
in comparison with the case tr = 0, the quantities a and ~ = ca in the heat-conduction equa- 
tion and the boundary conditions are replaced by a -- tr v2 and c(a -- trV2), respectively, 
the solution is obtained, for the case of identical and constant velocity of the melting 
and evaporation interfaces, by the method of Laplace transformation, analogously to [69]. 
Comparison with the results of [69] shows that when t r > 0 is taken into account, the tem- 
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perature front becomes steeper and the thickness of the melt layer less than in the case 
when t r = 0, Since t is very small (for aluminum t r - I0 TM sec [4]), the influence of 
finiteness of the rate of heat propagation becomes pronounced only when q is sufficiently 
large (for AI when q > 3. i0 I= W/m2). 

6. Conclusions. Problems relating to the description of heat transfer processes have a 
series of features which distinguish them from the classical Stefan problem. First, what is 
regarded as specified is not the surface temperature, but the intensity of the surface or 
volume heat source. Second, the boundary condition in Eq. (5) is found to be applicable 
only in problems of melting. In evaporation or dissociation limited by diffusion, the kinet- 
ic relations (3), (28) between the velocity of phase-interface motion and its temperature 
must be taken into account. In crystallization problems this relation takes the forms [8]: 
v o oAT (with a normal mechanism of crystal growth) and v Goexp (-E/At) (with a laminar mech- 
anism). Here AT is the supercooling at the crystallization front; E is the corresponding 
activation energy. 

In addition, the absorbing power of the material and hence the intensity of the heat 
source may depend on the temperature and position of the phase-transition front. Self-simi- 
lar quasisteady solutions of such problems may only be obtained in individual cases. It is 
typical for the given processes to be nonsteady. 

In a series of cases, the velocity of phase-interface motion changes nonmonotonically 
in the course of steady-state establishment, even with constant energy-flux density. This 
feature of the process may be due to the bulk character of the energy absorption [65], the 
dependence of the optical properties of a thin film on its thickness [77], or the change 
in thermophysical properties of the target [85], or to the change in the mechanism of des- 
truction of the material and the presence of two phase interfaces [79]. In [8, 86], the 
effect of crystal growth prior to solution was described; this effect is associated with the 
influence of surface-tension forces and the diffusional interaction of the melting inclu- 
sions. 

Other features of Stefan problems include the instability of their solutions (in a cer- 
tain range of parameters) and the infinite value of the velocity of phase-interface motion 
at initial instants of time. The mathematical model of the processes occurring may be sig- 
nificantly changed on taking account of the finite velocity of heat propagation, the hydro- 
dynamics of the melt, the surface-tension forces, and the limiting role of diffusion. The 
investigation of these phenomena is one of the most urgent problems of the theory. 

NOTATION 

T, temperature; Tb, Ts, Te, Tm, Td, initial, surface, evaporation, melting, and dissocia- 
tion temperatures; T~, temperature of midpoint of plate; To, steady temperature field; T~ = 
T--To, nonsteady corrections; t, time; to, time to establish a steady velocity of phase- 
interface motion; t~, time to establish a steady surface temperature; tr, heat-stress relaxa- 
tion time; t~ = 12a -I, characteristic time of plate heating; l, half-thickness of plate; a, 
thermal diffusivity; x, z, coordinates; y(t), v(t), coordinate and velocity of motion of 
phase interface; Vo, steady value of v; vl = v-- vo, nonsteady correction; v,, order of 
magnitude of the sound velocity in the target; ~, thermal conductivity; qo, density of 
incident energy flux; A, absorbing power; q = Aqo, absorbed-power density; q1(z), effective 
energy flux density in transparent dielectric; Q, heat of phase transition per unit volume 
of material; E, heat of phase transition, expressed in degrees (the subscripts m, e, d refer 
to melting, evaporation, and dissociation, respectively); Er, half the activation energy of 
the process of free-electron formation; ~ = c(T m-Tb)O~ ; c, specific heat per unit volume; 
g = x -- y(t), distance from the phase interface; X, Y, ~, 0, dimensionless coordinates, 
time, and temperature; An, Bn, K, mn, Vn, ~-, Cn, P*, constant coefficients; Ro, R(t), R~, 
initial, current, and final radius of a mel~ing crystal of spherical form; r, distance 
from the center of the sphere; f(x), initial temperature distribution; G, intensity of bulk 
heat source; ~, bulk absorption coefficient of light by the material; ni, normal to the phase 
surface; ai, angle between the corresponding normal and the direction of incidence of the 
radiation (i = i, liquid; i = 2, solid material); ~(z), Dirac delta function; y, M, density 
and molecular weight of material; Pd, equilibrium gas pressure at dissociation front; D, 
effective gas-transfer coefficient through layer of solid dissociation products; s, thickness 
of solid-deposit layer; p, minimum radius of curvature of evaporation surface; ~, degree of 
asymmetry of evaporation surface; h, crater depth; d, crater diameter; do, laser-beam diame- 
ter; R, gas constant; u(z), Heaviside function. 
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